Испанскими и американскими учеными предложена принципиально новая конструкция наноустройства
В последние 10 лет научными группами по всему миру активно изучались взаимодействия света и материи. Более того, научный мир преуспел в создании устройства, которое могло бы контролировать эти взаимодействия. Для этого отлично подходят металлические наноструктуры и их всевозможные ассоциации, т.к. эти структуры позволяют блокировать световую волну в объеме, характерные размеры которого много меньше длины волны излучения. Эти системы также хорошо взаимодействуют с другими элементами фотоники, например, квантовыми источниками. Благодаря развитию способов производства наноструктур, в данный момент мы приближаемся к масштабу, в котором квантовое поведение подобных структур может быть чрезвычайно важным. Это новая область исследований, известная как квантовая плазмоника. Работая в этой области, совместная группа ученых из Испании и США изучали системы, состоящие из квантовых излучателей, размещенных в зазоре между двумя металлическими наночастицами. В рамках экспериментов они наблюдали интересные нелинейные явления, обусловленные фермионным характером квантового источника. Подробные результаты их работы были опубликованы в журнале Nano Letters. Для расчета эксперимента ученые использовали модели, основанные на функции Зубарева-Грина, предложенной в 1960-х годах русским физиком Д.Н. Зубаревым для решения различных задач статистической физики, а также на представлении о том, что на поверхности металлических наночастиц образуются так называемые плазмоны – коллективные колебания электронов, способные распространяться по поверхности металла и сильно взаимодействовать со светом. Методология была адаптирована для случая оптического отклика плазмонов, сильно взаимодействующих с экситонами (парами «электрон-дырка»). Теория предсказывает, что, в зависимости от начального состояния квантового источника, существует возможность «включения» и «выключения» связи между самим источником и плазмонами металлической наночастицы. В поставленном эксперименте взаимодействие плазмонов и экситонов в квантовом источнике света было возможно, благодаря сильным электромагнитным полям, формирующимся в зазоре между квантовыми точками. В своей модели ученые описывают это взаимодействие с помощью двух членов уравнения: один связан с формированием плазмонов и аннигиляцией экситонов, второй – с обратным процессом. Команда планирует использовать свой подход для исследования более сложных систем. По мнению ученых, предложенная ими методика расчета могла бы быть применена для систем, где плазмоны взаимодействуют с экситонами, в частности, для плазмонных транзисторов, модуляторов и квантово-информационных устройств. Кроме того, она могла бы использоваться для разработки новых оптических устройств, таких как оптические коммутаторы.
Также по теме:
Источники: |
|
||||||||||||||||||
|
|