Магнитное поле складывает оригами
В оригинальной версии метода капиллярного оригами ученые нашли способ изменить форму тонкой мембраны, «оборачивающей» каплю жидкости (см. видео), под действием сил поверхностного натяжения. Эксперимент состоял в следующем: на определенным образом разрезанную тонкую мембрану (в форме звезды) помещалась капля жидкости. За счет смачивания и сил поверхностного натяжения, «лепестки» мембраны заворачивались вокруг капли, изменяя свой изгиб при постепенном высыхании жидкости. Методика позволяла просто и быстро формировать определенные структуры из эластичных материалов. Для мембраны с известными параметрами и определенных размеров капли известной жидкости (например, воды), физика однозначно определяет полученную форму мембраны. Но ученые их French National Center for Scientific Research (CNRS, Франция) и Paris Diderot University (Франция) нашли способ расширить возможности методики, заменив обычную воду (использовавшуюся в первом эксперименте) на так называемую магнитную жидкость, т.е. жидкость, восприимчивую к магнитному полю. В своих экспериментах ученые использовали суспензию в воде наночастиц маггемита (Fe2O3) нанометрового размера. Капля жидкости помещалась на эластичную мембрану (сделанную из полидиметилсилоксана), толщиной от 50 до 100 мкм, разрезанную треугольниками со стороной со стороной от 5 до 15 мм. Выяснилось, что при добавлении к эксперименту вертикального магнитного поля, форма капли, «обернутой» мембраной, превращалась из почти сферической в коническую, при этом высота структуры увеличивалась с увеличением магнитного поля. Также было обнаружено, что высота структуры не может увеличиваться до лимита, определенного размерами мембраны: магнитное поле достигает критического для данной системы значения и под действием сил поверхностного натяжения структура «перещелкивается» в новую конфигурацию. Что интересно, новая структура своей симметрией отличается от изначальной «пирамиды». Критическое значение напряженности магнитного поля в каждом случае зависело от размера капли жидкости и параметров эластичной мембраны. При этом, по словам ученых, метод поддается масштабированию. Требуемые «критические» значения полей для меньших объектов будут ниже. Таким образом, методика может быть полезной для формирования трехмерных структур и динамического изменения их формы под действием магнитного поля. К сожалению, согласно экспериментам, нестабильность («переключение» структуры с одной на другую) не является обратимым процессом. При снижении напряженности магнитного поля мембрана не принимает первоначальную форму. Подробные результаты работы ученых были опубликованы в журнале Physical Review Letters.
Также по теме: Источники: |
|
||||||||||||||||||
|
|