Оптические химические сенсоры
К настоящему времени разработано огромное количество самых разнообразных химических сенсоров. Началом истории химических сенсоров можно считать конец XIX - начало XX века. В это время появился прообраз катарометра (1880 г.), который использовался для определения содержания водорода в водяном паре, двухэлектродная ячейка Кольрауша (1885 г.), металлические электроды Нернста (1888 г.) и стеклянный электрод Кремера (1906 г.). В конце XIX - начале XX вв. под сенсорами (слово "сенсор" от английского слова sense - чувство, ощущение) понимали портативные устройства для определения химического состава среды. Типичная конструкция сенсора включала чувствительный элемент и преобразователь. В 50-х годах XX в. аналитическое приборостроение достигло такого уровня, что стало возможным создание проточных методов анализа. В 1952 г. Мартином и Джеймсом был предложен газовый хроматограф. Появилась острая необходимость в детекторах - приборах, которые позволили бы в автоматическом режиме определять концентрацию вещества в потоке газа или жидкости. Миниатюрность и относительно небольшие размеры сенсоров позволяет создавать их наборы в небольшом объеме. Так, на одном полупроводниковом кристалле можно разместить несколько чувствительных элементов или в небольшом объеме несколько самостоятельных сенсоров. Таким образом, появилась возможность создания "лаборатории на чипе", снабженной микропроцессором для обработки результатов анализа. Оптические химические сенсоры являются одной из важнейших категорий химических сенсоров. В зависимости от типа оптических сенсоров их действие основано на следующих принципах:
Оптические химические сенсоры имеют ряд преимуществ над другими химическими сенсорами: они нечувствительны к электромагнитным и радиационным полям, способны передавать аналитический сигнал без искажения на большие расстояния и имеют невысокую стоимость. Из оптических химических сенсоров перспективны сенсоры на основе волоконной оптики.В волоконно-оптических сенсорах (ВОС) на торце световода закрепляется (иммобилизуется на каком-нибудь носителе) реагентсодержащая фаза (РСФ). Характеристика материала световода определяет оптический диапазон и соответственно аналитические возможности всего устройства. Если оптическое волокно изготовлено из кварца, то такой ВОС работает в широкой области спектра, включая ультрафиолетовую его часть. Для стекловолокна область длин волн охватывает лишь видимую область спектра. Если оптоволокно изготовлено из полимерного материала (такие устройства имеют невысокую стоимость), то диапазон длин волн, в которой работает ВОС, находится за пределами более 450 нм. Используют как одиночные оптические волокна, так и пучки из многих оптических волокон. Оптические волокна позволяют осуществить передачу оптических сигналов на очень большие расстояния и, следовательно, идеальны дня тех случаев, когда объект анализа удален от исследователя. Кроме того, их можно изогнуть (однако угол изгиба не должен быть слишком острым), а поэтому их можно использовать в самых разнообразных оптических светочувствительных устройствах, таких, как проточные ячейки для непрерывного мониторинга. Оптосенсоры могут быть обратимыми и необратимыми. Сенсор обратим, если РСФ не разрушается при ее взаимодействии с определяемым веществом. Если часть реагента потребляется в ходе определения, сенсор работает необратимо. На рис. приведена схема формирования отклика обратимого ВОС для определения pH среды, основанного на поглощении света. Устройство такого сенсора является достаточно простым: два пластиковых волокна вмонтированы в целлюлозную трубочку, содержащую краситель фиолетовый красный, иммобилизованный с помощью ковалентного связывания на полиакриламидных микрошариках. Кроме этих микрошариков внутрь трубочки помещены такого же размера шарики из полистирола для лучшего рассеяния света. Через одно волокно свет от вольфрамового источника излучения входит, а через другое выходит. Интенсивность выходящего потока света измеряется детектором, настроенным на соответствующую область длин волн. Пробка на торце трубочки удерживает РСФ механически и препятствует ее взаимодействию с определяемым компонентом в торцевой части. Подобный ВОС может быть использован и для определения концентрации O2. В этом случае сигнал связан с тушением флуоресценции реагента при взаимодействии с кислородом. Такого типа ВОС могут быть использованы и для определения pH в живом организме. Необратимые ВОС из-за расходования РСФ имеют ограниченный срок службы. Однако его можно продлить заменой РСФ на новую фазу. Стабильный сигнал от этих ВОС может быть получен лишь в условиях стационарного массопереноса определяемого компонента в зону его взаимодействия с РСФ. Любая помеха, нарушающая массоперенос, дает ошибку в показаниях ВОС. На рис. также показана схема работы необратимого ВОС на кислород. Определяемый компонент диффундирует через селективную мембрану с соответствующим размером пор в полость, содержащую иммобилизованный флуоресцирующий краситель. Его свечение гасится в присутствии O2 пропорционально парциальному давлению кислорода. Степень гашения фиксируется соответствующим устройством. Если резервуар с РСФ достаточно велик, то потребление реагента незначительно и сенсорное устройство может служить долго.
ВОС также классифицируют на активные и пассивные сенсоры. Пассивные сенсоры состоят из такого материала, который не влияет на оптические свойства волокна. В активных сенсорах, наоборот, волокна модифицируются материалом, который придает существенную аналитическую чувствительность волокнам. Например, покрытие волокна аналитически-чувствительным индикатором методом плакирования. В этом случае оптические свойства волокна в некотором роде модулированы в присутствии анализируемого вещества.
Источники:
|
|
||||||||||||||||||||
|
|