Гравитация делает Вселенную «классической»
Квантовая механика допускает существование странных состояний, получивших название суперпозиции. К примеру, электрон может иметь спин, одновременно направленный и вверх, и вниз. Хотя единичные частицы могут быть достаточно стабильны в подобных состояниях, теоретиков давно занимал вопрос, почему крупные объекты никогда не демонстрируют подобного поведения (почему, к примеру, никто никогда не видел реального кота Шредингера, который одновременно и жив, и мертв?). Многие теоретики считают, что макроскопические суперпозиции состояний, где большое число квантовых компонент должны поддерживать определенную связь друг с другом, разрушаются под воздействием внешней среды. Среда при этом оказывает разное влияние на компоненты суперпозиции, что «декогерирует» систему в классическое состояние. Эксперименты показывают, что даже такие малые системы, как отдельные атомы, при условии чрезвычайной защиты от электромагнитных полей, не могут оставаться в суперпозиции состояний. Поскольку гравитация является широко распространенной (и в каком-то смысле неизбежной), исследователи предположили, что именно она играет важную роль в обеспечении «классического» поведения макроскопических систем. Группа ученых из Dartmouth College (США) в своей последней работе, опубликованной в Physical Review Letters, предположила, что виной всему реликтовое гравитационное излучение – мелкая «рябь» в пространстве-времени, представляющая собой «эхо» Большого Взрыва. По их мнению, данное излучение является родственным космическому микроволновому фону, но, как полагают ученые, соответствует несколько меньшей температуре (около 1 градуса по шкале Кельвина). Хотя подобные гравитационные волны вряд ли могут повлиять на крупные объекты, ученые поставили перед собой задачу убедиться, что это и есть гарантия того, что мы не увидим суперпозиции состояний макроскопических объектов в реальном мире. Гравитационная волна представляет собой нарушения в пространстве и времени. Когда такое возмущение встречается с суперпозицией состояний, оно может «рассинхронизировать» его компоненты. Чтобы получить представление о масштабах этих эффектов, ученые изучили простую модель объекта, находящегося в суперпозиции состояний (сам объект представлял собой сочетание массы и энергии в некотором фиктивном поле). В рамках исследования ученые предположили, что воображаемый объект находится в суперпозиции основного и возбужденного состояния, разделенных энергией в 1 эВ. Далее было оценено время, за которое гравитационное взаимодействие «рассинхронизирует» это состояние. Для небольшого объекта расчеты показали достаточно длительный период времени, сопоставимый с возрастом Вселенной. Однако ученые также доказали, что скорость декогеренции возрастает, пропорционально квадрату разности энергий между состояниями, входящими в суперпозицию. Для больших объектов, имеющих количество атомов порядка числа Авогадро, скорость падает до 0,01 секунд. Как считают коллеги ученых, предложенная теория вполне жизнеспособна. Хотя в космологической модели, скорее всего, гравитационный фон будет более сложным, чем в модели, использованной американскими учеными, полученный результат, безусловно, интересен для научной общественности.
Также по теме:
Источники: |
|
||||||||||||||||||
|
|