Распространение поверхностных плазмонов-поляритонов зависит от формы сечения нанопроволоки
Одномерные металлические конструкции идеально подходят на роль основных компонент в наноразмерных оптических устройствах, позволяющих преодолеть дифракционный предел видимого света. Подобные устройства имеют широчайшие возможности за счет того, что они могут ограничивать световые волны в малом (субволновом) объеме пространства в виде так называемых поверхностных плазмонов-поляритонов – квазичастиц, представляющих собой коллективные колебания электронов зоны проводимости на поверхности металлов. С точки зрения создания новых оптоэлектронных устройств для работы с оптическим излучением на субволновых масштабах особенно интересны металлические нанопровода и нанополосы, диаметр которых меньше 200 нм. Потенциально они могут играть роль оптических соединений и своего рода «маршрутизаторов» в плазмонных сетях. Основная проблема заключается в том, что поверхностные плазмоны-поляритоны с частотой, соответствующей оптической части электромагнитного спектра, не распространяются на большие расстояния в металлических нанопроводах. В лучшем случае они могут перемещаться на несколько десятков микрон, после чего рассеиваются, превращаясь в тепло. Для дальнейшей работы в этом направлении ученым необходимо лучше понять и количественно оценить эти потери. Только такой путь позволит создавать наноразмерные устройства с малыми потерями. Группа ученых из Rice University (США) изучала, как распространяются поверхностные плазмоны-поляритоны в золотых нанопроводах, которые имеют пятиугольное и звездообразное сечения. Хотя диаметр нанопроводов, безусловно, важен, оказалось, что не меньшую роль играет и форма их поперечного сечения. Поверхностные плазмоны-поляритоны локализованы по сторонам и углам нанопроводов с большим диаметром. Но, по мере уменьшения диаметра нанопроводов, поверхностные плазмоны-поляритоны на сторонах сечения исчезают, а «угловые» - трансформируются в так называемые коллективные моды, которые существенно зависят от симметрии (формы) поперечного сечения нанопровода. В рамках своей работы исследователи наблюдали эти преобразования с помощью специальной техники наблюдения поверхностных плазмонов-поляритонов. Для этого они освещали один конец нанопровода, покрытый флуоресцентным красителем, при помощи лазера с частотой волны 785 нм. За счет распространения поверхностных плазмонов-поляритонов, краситель постепенно терял свою насыщенность, что давало возможность увидеть «карту» распространения квазичастиц. Для подтверждения собранных данных результаты описанных экспериментов ученые сравнили с результатами моделирования, в котором участвовали нанопровода с различной формой поперечного сечения (в рамках разработанной модели нанопровода располагались в диэлектрической среде, как это и происходило на эксперименте). Исследования показали, что поверхностные плазмоны-поляритоны путешествуют на меньшие расстояния в металлических нанопроводах с формой сечения, напоминающей пятиконечную звезду (по сравнению с нанопроводами, чья форма сечения – обычный пятиугольник). Полученный таким образом результат, как считают ученые, дает новые понимания различных механизмов потерь в металлических нанопроводах. В перспективе открытие обеспечит проектирование лучших нанооптических и плазмонных устройств (с меньшими потерями за счет использования более удачной формы поперечного сечения нанопроводов). В данный момент команда занимается поиском других способов компенсации потерь поверхностных плазмонов-поляритонов, в частности, с помощью включения в нанопровода так называемой «усиливающей» среды, накачка которой осуществляется при помощи второго лазера. Подробные результаты работы были опубликованы в журнале ACS Nano.
Также по теме:
Источники: |
|
||||||||||||||||||
|
|