Новое понимание особенностей контактов открывает возможности для исследований

Схематическое изображение предложенной структуры контакта. (кликните картинку для увеличения)

Схематическое изображение предложенной структуры контакта. (кликните картинку для увеличения)

03.09.2014 (21:37)
Просмотров: 2620
Рейтинг: 0.00
Голосов: 0

Теги:
металл, ток, транзистор, электрон,
Технология >> Нанотехнология






Ваша оценка
-2 -1 0 1 2
В последние время внимание исследователей привлекают методики создания надежных низкоомных контактов между металлом и MoS2. В своей недавней работе ученые из США показали, что управление структурой границы раздела фаз между металлом и MoS2 в перспективе позволит создать контакты, обладающие в разы меньшим сопротивлением. Такие низкоомные контакты, помимо большей производительности устройств, обеспечат возможность новых фундаментальных исследований MoS2, поскольку сопротивление в них в меньшей степени будет влиять на процесс измерения основных свойств материала.

В своей последней работе совместная группа ученых из Los Alamos National Laboratory и Rutgers University (США) нашла способ использовать металлическую фазу MoS2 в точке контакта полупроводникового фрагмента материала с металлом, обеспечив существенное снижения общего сопротивления. Ученые продемонстрировали, что благодаря разработанной ими новой пространственной структуре контакта им удалось достичь разницы в шесть порядков между током во включенном и в выключенном состояниях через полевой транзистор. Это отношение значительно превышает требования современной электроники (к примеру, для производства ноутбука хватило бы и четырех порядков разницы).

Как отмечают в своей работе ученые, идея изменения свойств материала в области контакта для снижения его сопротивления не нова. Но ранее другие научные группы пытались идти методом допинга, что не приносило ожидаемых результатов, поскольку с течением времени свойства легированного материала изменялись. Таким образом, необходим был иной подход.

Правильный путь научная группа нашла, наблюдая за фазовыми превращениями в MoS2. Они заметили усиление химической активности вещества, которое определялось высокой плотностью электронов при определенных условиях, и предположили, что эта металлическая фаза может быть использована для уменьшения сопротивления между металлом и MoS2 в контактах. Предположение подтвердилось экспериментально: металлическая фаза обеспечила хорошую инъекцию электронов, вне зависимости от того, какой металл находится на другой стороне контакта, поскольку энергетические уровни металлической и полупроводниковой фаз MoS2 очень хорошо выровнены друг относительно друга.

Для получения металлической фазы MoS2 ученые использовали процесс, получивший название «литиирование», в рамках которого материал подвергается воздействию n-бутиллития. Данный процесс довольно прост, если речь идет об объемном веществе. Но ученым требовалось получить металлическую фазу толщиной порядка микрона, поэтому в ходе эксперимента они особенно внимательно следили за концентрацией вещества и временем литиирования.

Исследователи также экспериментировали с различными способами производства MoS2. В то время как процесс создания металлической фазы был успешен в 60 – 70% случаев, если использовался MoS2, полученный методом пиллинга, при других техниках производства (к примеру, формировании MoS2 при помощи химического осаждения из паров) успеха удавалось добиться лишь в 10 – 20% случаев.

Низкоомные контакты важны для любых типов устройств, особенно для полевых транзисторов. Иначе слишком много энергии теряется в виде тепла. На сегодняшний день именно большие потери на контактах являются причиной того, что электроника на основе нанотрубок и других наноструктур пока не достигла тех вершин, которых ожидали от нее многие исследователи. Таким образом, выявление способа, с помощью которого можно создать низкоомные контакты между металлом и MoS2, так важно.

На данный момент разработка еще не готова для коммерческого использования. Необходимо продолжение работы, чтобы ответить на вопросы о стабильности устройств. Металлическая фаза MoS2 является метастабильным состоянием; она возвращается к полупроводниковой фазе при температуре выше 150 градусов по шкале Цельсия. Все протестированные до сих пор устройства оказались стабильными при обычных условиях, однако пока неизвестно, что произойдет при перегреве такого контакта.

В ближайшем будущем команда планирует подробнее изучить оптические свойства MoS2, чтобы понять, как этот материал может использоваться в оптоэлектронных устройствах, где потенциально можно применить тот же подход для формирования контакта.

Подробные результаты работы опубликованы в журнале Nature Materials.

Нравится


Екатерина Баранова

Также по теме:

Источники:







Rambler's Top100