Предложен путь улучшения Li-Ion мембран для батарей
Блок-сополимеры состоят из отдельных нитей полимеров, соединенных друг с другом посредством ковалентных связей. Эти волокна иногда образуют фазы, оптимальные для формирования наноразмерных структур, которые самостоятельно собираются в сложные рисунки. Недавно исследователи из University of Delaware (США) и Massachusetts Institute of Technology (MIT, США) проводили эксперименты с блок-сополимерами, содержащими ион-сольватирующий блок (например, полиэтиленоксид или ПЭО) и непроводящий блок (например, полистирол). В совокупности эти материалы могут формировать идеальные мембраны аккумуляторных батарей, поскольку они менее легковоспламеняющиеся, чем традиционные жидкие или гелеобразные электролитные системы. Напоминающий жидкость полиэтиленоксид (который, как правило, формирует соединение с солью металла, например, литиевой), обеспечивает пути для ионной проводимости, а блок полистирола механически и термически стабилен. Поскольку эти два полимера сохраняют многие свои «персональные» свойства, даже когда связаны вместе внутри блок-полимера, подобные материалы позволяют проектировать батареи с требуемой ионной проводимостью и механическими свойствами. Предыдущие работы, направленные на изучение взаимосвязи внутри наноразмерой структуры полиэтиленоксида и полистирола, легированных солью лития, а также на исследование ионной проводимости этих материалов, показало, что проводимость может либо увеличиваться, либо уменьшаться, если молекулярный вес блока полиэтиленоксида увеличивается. В попытке уточнить эту неоднозначность, исследователи использовали фотоэлектронную рентгеновскую спектроскопию с распылением положительно заряженных ионов C60, чтобы понять, как ионы распределены в тонких пленках сополимера, содержащего полистирол и полиэтиленоксид. Методика фотоэлектронной рентгеновской спектроскопии позволяет измерить элементный состав поверхности. Она также позволяет определять химические и электронные состояния атомов в образце. Спектры в рамках этой методики получают путем облучения материала пучком рентгеновских лучей, измеряя кинетическую энергию и число электронов, которые отражаются от поверхностного слоя материала (от 0 до 10 нм глубины). Ионы C60 в рамках упомянутой работы использовались для модификации данной методики – проникновения через полимерную пленку, чтобы исследовать элементный состав, в зависимости от глубины. Как считают сами ученые, эти частицы сыграли важную роль в успехе исследования, поскольку они были в состоянии смягчить ущерб от распыления ионов (наносимый, как правило, при «травлении» полимерных материалов в рамках аналогичных экспериментов при помощи ионов Ar+). Благодаря «глубинному» изучению структуры с помощью ионов C60, выяснилось, что ионы лития распределяются внутри практически равномерно. Этот результат имеет решающее значение для понимания того, как соли влияют на ионную проводимость наноструктурированных систем. В перспективе он поможет в разработке усовершенствованных ионных систем для таких приложений, как аккумуляторные батареи или топливные ячейки. К слову, упомянутая методика глубинного изучения при помощи ионов C60 может быть также использована для анализа наноструктуры различных мягких материалов. Подробные результаты работы, а также описание предложенной методики опубликованы в журнале ACS Nano.
Также по теме:
Источники: |
|
||||||||||||||||||
|
|