Силицен позволяет создавать стабильные полевые транзисторы
Силицен представляет собой лист кремния толщиной всего в один атом, имеющий гексагональную кристаллическую решетку, т.е. являющийся близким родственником графена (материала одноатомной толщины на основе углерода). В отличие от своего «углеродного» аналога, силицен не существует в природе. Однако считается, что этот материал может легче трансформироваться, как химически, так и структурно, по сравнению с графеном. Эта особенность может сделать силицен более универсальным с точки зрения управления зонной структурой (открытия запрещенной зоны и управления подвижностью зарядов) для применения в электронике. Конструкции на основе силицена, в отличие структур из графена и других двумерных материалов, сложно адаптируемых к промышленности, могут хорошо встраиваться в существующие устройства на основе кремния, которые составляют подавляющее большинство в современной электронике. Кроме того, силицен отличается более сильным спин-орбитальным взаимодействием по сравнению с графеном, что делает его лучшим кандидатом на роль двумерного топологического изолятора в маломощных чипах, спинтронных устройствах и элементах квантового компьютера. Ранее исследователи уже синтезировали силицен на специальных подложках, в частности, кристаллическом серебре, но, в отличие от графена, который стабилен в течение длительного времени, этот материал сразу же разлагается на воздухе. Это означает, что с силиценом нельзя оперировать, используя привычные технологические методы. Основная идея новой работы совместной группы ученых из University of Texas (США) и Laboratario MDM (Италия) заключается в замене подложки из нерационального и дорогого кристаллического серебра на тонкую пленку простого серебра, нанесенную на подложку из слюды. Сформированный на такой поверхности силицен заключается в вакуумную «упаковку» из оксида алюминия, что предотвращает его разрушение на воздухе. Для создания рабочего устройства исследователи механически расслаивали ультратонкий «сендвич», состоящий из пласта силицена между слоями оксида алюминия, от подложки и размещали его на окисленной кремниевой платформе. Полученная таким образом структура функционирует, как полевой транзистор, используя сильно легированную подложку из кремния в качестве затвора. Электроды стока и истока формируются при помощи выборочного травления слоя серебра. Хотя созданный таким образом транзистор стабилен всего лишь в течение нескольких минут, этого времени может вполне хватить для экспериментального изучения предсказанных для силицена экзотических физических свойств. В частности, предполагается, что можно обеспечить «настройку» материала, варьируя его характеристики в диапазоне между полупроводниковыми и сверхпроводниковыми, а также формируя различные топологические состояния. Также ученые ожидают, что манипуляции с силиценом позволят открыть в нем широкую запрещенную зону, что даст возможность использовать материал в производстве цифровых микросхем и полупроводниковой промышленности. Как известно, материал с широкой запрещенной зоной имеет важное значение для электроники, поскольку позволяет формировать транзисторы, которые могут включаться и выключаться, а также выполнять логические операции. Хотя графен имеет самую высокую проводимость среди известных материалов, ему не хватает одного важнейшего физического свойства – возможности задавать ширину запрещенной зоны. Это одна из главных причин, почему исследователи продолжают искать альтернативные двумерные материалы для электроники. Подробные результаты работы ученых опубликованы в журнале Nature Nanotechnology.
Также по теме:
Источники: |
|
||||||||||||||||||
|
|