Коррозия создает сложные трехмерные наноструктуры
Современный уровень технологий позволяет создавать нанообъекты «от малого к великому», т.е. атом за атомом, молекула за молекулой, но обычно это слишком трудоемкий процесс, подразумевающий перемещение отдельных атомов и молекул с помощью острия сканирующего электронного микроскопа. Технологию также нельзя назвать чрезвычайно удобной, т.к. перемещаемые атомы и молекулы имеют тенденцию к прилипанию к острию. Группа ученых из Institut Català de Nanotecnologia (Испания) преодолели эту «липкую» проблему с помощью возможностей коллоидной химии. Исследователи в своей работе показали, что коррозийные процессы могут быть использованы для воздействия на внутренние атомы наночастицы с целью их извлечения с образованием полостей в наночастице. Таким образом, они могут быть использованы для формирования полых наноструктур. Ученые отметили, что на наноуровне коррозия является гораздо более агрессивным процессом, чем на макроуровне из-за большей площади поверхности наночастиц. Соответственно, этот процесс может дать результат, который был бы невозможен в привычном нам макромасштабе. Структуры, которые можно произвести с помощью предложенной методики, варьируются в широком диапазоне от молекулярных лабиринтов (сделанных из серебра, золота или платины) до золотых фуллеренов, включая частицы в форме коробок, пористые нанотрубки и прочие полезные объекты. Необходимый для запуска процесса эффект Киркендалла происходит, когда наблюдается поток вакансий атомов в направлении, противоположном естественной атомной диффузии в металлах. Этот поток вызывает образование пустот в наночастицах. Также полые наноструктуры из благородных металлов позволяют создавать процесс гальванической замены. Оба эффекта были собраны учеными в единый процесс, в результате которого металлические наноструктуры частично растворяются, причем степенью растворения (а значит, толщиной стенок сформированных полых наноструктур) можно управлять, варьируя параметры эксперимента. Стоит отметить, что описанный процесс происходит самопроизвольно, если наночастицы и химические компоненты смешиваются в нужной пропорции. Полученные в результате описанного процесса полые наночастицы (открытые и закрытые капсулы) могут использоваться как для защиты некоторых нанообъектов от воздействия окружающей среды, так и для переноса определенного «полезного груза», к примеру, для транспортировки лекарственных препаратов для лечения раковых опухолей. Перемещением металлических капсул можно управлять при помощи магнитного поля. Воочию наблюдать созданные структуры исследователям помогла техника просвечивающей электронной микроскопии высокого разрешения. К слову, по мнению ученых, методика производства наноструктур может быть легко адаптирована к промышленным объемам производства. Подробно результаты работы приведены в статье, опубликованной в журнале Science.
Также по теме:
Источники: |
|
||||||||||||||||||
|
|